If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(y)^2=9y
We move all terms to the left:
(y)^2-(9y)=0
a = 1; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*1}=\frac{18}{2} =9 $
| 13+2x=12x+32 | | 10d=7=47 | | 11w/7-2=9 | | -1/3(9a+42)-5a=-70 | | 24-17=n | | 3+.5(4a+8=9-2a | | (2x+7)=(3x-13) | | -3/7(21x+7)=-7x+11 | | 9x-6x=-3(2x-9 | | 8x-43=11-6x | | Y=3x+1(2,5) | | 5(-x+6)=15 | | 42+5t=12 | | n/4-31=33 | | x/1.5=14 | | 3x-9/3=5 | | 1/2(x-10)=-1/2x+4 | | a-4/2=3 | | 8w-21=2w-9,w | | 6c(4)=0 | | 16q-26=6 | | 3*5*n*n=54 | | 6+4(1-3)=7x | | 17.3*15.3=x | | 3(5)(n)(n)=54 | | 3(5)(n)(n)=55 | | 6e-2e-8+4=2e-4+2e | | 3q^+q^+q^=180^ | | 27-3x2=0 | | -2=-8(1+9k)-3(-2+6k) | | 1y-6y-21=76 | | b=5b-18 |